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Abstract 

Bringing together artificial intelligence and clinical expertise is starting to reshape how we 

approach both physical and mental healthcare. With growing pressure on health systems to 

deliver more personalized and proactive care at scale, we set out to understand how AI can be 

used more meaningfully, not as a black-box solution, but as something grounded in real clinical 

insight. In this work, we explore a framework that combines semi-supervised learning, deep 

convolutional neural networks, and ensemble methods to make sense of complex health data. 

That includes inputs like wearable sensor readings, electronic health records, and genomic 

profiles. On the mental health side, we trained emotion prediction models using longitudinal 

behavioral data to help flag early signs of depression and anxiety. For physical health, our 

models performed well on conditions like skin cancer and diabetes, with an AUC of 0.94 and an 

F1 score of 0.91 on our test sets. Performance metrics aside, we put a lot of weight on making 

these models understandable and clinically relevant. We used SHAP values to explain which 

features were driving predictions and wove in domain expertise throughout the process, from 

how we prepared the data to how we assessed the models. The goal wasn’t just to make 

something that worked, but something that could actually inform care decisions. We also looked 

at the infrastructure side of things. For AI to be deployed safely and at scale, especially across 

populations, you need more than good algorithms. Our study points to the importance of cloud 

infrastructure, spatial data tools, and federated learning in supporting this kind of deployment  
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responsibly. In the end, what we found reinforces something we believe strongly: combining 

scalable AI with medical insight isn’t just a technical upgrade. It’s becoming essential to how 

modern healthcare works. 

Keywords: Predictive Healthcare, Mental Health AI, Deep Learning, Emotion Prediction, 

Wearable Health Data, Scalable Artificial Intelligence. 

1. Introduction 

 

1.1 Background 

 

Healthcare is shifting fast. Across the world, systems are being pushed to adapt to an aging 

population, a growing burden of chronic and mental health conditions, and the challenge of 

getting the right care to people when they need it. It’s a lot to navigate. In the middle of all this, 

artificial intelligence has started playing a meaningful role, not as a silver bullet, but as a tool 

that can help improve how we diagnose, predict, and manage illness, especially at scale. Deep 

learning, in particular, has shown a lot of promise. It’s been effective in areas like analyzing 

medical images, modeling disease risk, and picking up early signs of illness from messy, real-

world data. One example: Nasiruddin et al. (2024) used convolutional neural networks to 

analyze skin lesion images and saw noticeable improvements in how accurately conditions were 

classified across a wide range of patients in the U.S. healthcare system [12]. Another study by 

Ahmed et al. (2024) focused on predicting diabetes using ensemble methods applied to both 

clinical records and behavioral data. Their models performed well in real clinical settings, which 

is a big step forward [1]. 

 

But physical health is only part of the picture. There’s growing momentum behind using AI to 

support mental health, a space that’s often overlooked in technical research. It’s tricky, mental 

health data tends to be more subjective, harder to label, and deeply tied to context. Zeeshan et al. 
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(2025) took on this challenge by testing semi-supervised emotion prediction models aimed at 

identifying anxiety and depression early on, especially in underrepresented communities in the 

U.S. [17]. Because they didn’t rely completely on labeled data, their approach worked better in 

situations where patient reporting was sparse or inconsistent. At the same time, Mahabub et al. 

(2024) explored how wearable devices could feed continuous physiological signals into AI 

systems to monitor both physical and psychological well-being in real time [11]. The result was 

a kind of bridge between what the body is doing and what the mind might be experiencing, an 

approach that could lead to earlier and more personalized intervention. 

 

What ties these developments together is a shared recognition that building accurate models isn't 

enough on its own. You also need to make sure they work in the real world. Mahabub, Das, et al. 

(2024) make the case that precision medicine should be about more than just getting the 

prediction right, it needs to reflect the patient’s history, existing conditions, and broader 

background [10]. Without that context, models risk being clinically irrelevant or even 

misleading. The same applies when you scale up. As healthcare systems become more 

connected, the need for better infrastructure grows. Das, Zahid, et al. (2025) point out how 

important spatial data governance will be in the so-called healthcare metaverse, where real-time 

inputs from sensors, patient records, and environmental data need to work together smoothly 

[5]. Similarly, Das, Ahmad, et al. (2025) argue for cloud-first pipelines that help systems stay 

responsive, efficient, and interoperable across settings [4]. 

 

That said, we’re not out of the woods. A lot of current AI models are too narrow, focused on 

single diseases or small population groups, which limits their usefulness. Fairness and 

transparency are still major sticking points, especially in mental health applications where trust 

is everything. And while personalizing predictions in real time is the goal, many models still fall 

short, particularly when dealing with complex conditions like anxiety or metabolic disorders. 

Data fragmentation makes things harder too, information is scattered across wearables, medical 
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records, and genetic databases, and pulling it together in a meaningful way takes careful 

planning and strict ethical oversight. This study picks up at that intersection, where predictive 

modeling, clinical insight, and scalable systems meet. The goal is to build a unified framework 

that brings physical and mental health prediction under one roof. It draws on diverse data types, 

uses deep learning where appropriate, and includes interpretability layers that reflect clinical 

realities.  

 

1.2 Importance Of This Research 

 

Healthcare is moving quickly. Around the world, systems are under pressure to keep up with an 

aging population, rising cases of chronic and mental health conditions, and the ongoing struggle 

to get people the care they need when they need it. It’s a complicated landscape. In the middle 

of all this, artificial intelligence has started to find its place, not as some miracle fix, but as a 

practical tool that can help improve how we detect, understand, and manage illness, especially at 

scale. One area that’s shown real promise is deep learning. It’s made a difference in tasks like 

analyzing medical images, estimating disease risk, and spotting early warning signs in messy 

clinical data. Take, for example, the work by Nasiruddin et al. (2024), who used convolutional 

neural networks to analyze skin lesion images. Their models were more accurate across a wide 

range of patients in the U.S., which is no small thing [4]. In another case, Ahmed et al. (2024) 

developed ensemble models to predict diabetes, using both clinical and behavioral data. Their 

approach held up in real-world settings, which makes it especially valuable for day-to-day 

healthcare [12]. 

 

Of course, health isn’t only about the body. There’s been a growing push to bring AI into mental 

health care too, although it’s still a tougher nut to crack. The data is more subjective, the labels 

are harder to define, and context matters a lot. Zeeshan et al. (2025) took a stab at this by testing 

semi-supervised emotion prediction models aimed at spotting anxiety and depression early, 
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particularly in underserved communities in the U.S. [17]. Because they didn’t rely fully on 

labeled data, the models worked better in settings where people might not report symptoms 

consistently. In a related study, Mahabub et al. (2024) looked into how wearable devices could 

continuously feed physiological signals into AI models, bridging the gap between physical 

signals and emotional states [11]. Their work points toward systems that can pick up on mental 

health concerns in real time, allowing for more timely and tailored responses. 

 

What links all of these efforts is the understanding that accuracy on its own isn’t enough. 

Models need to hold up in the real world. Mahabub, Das et al. (2024) argue that precision 

medicine should consider a person’s full clinical picture, history, comorbidities, and social 

background, not just isolated predictions [10]. Without that, you run the risk of models that look 

good on paper but fall short in practice. There’s also the technical side to think about. As 

healthcare data becomes more interconnected, the systems managing it need to be ready. Das, 

Zahid, et al. (2025) have raised the importance of spatial data governance in what they describe 

as the healthcare metaverse, where real-time inputs from sensors, records, and environmental 

data all need to function together smoothly [5]. On a more technical note, Das, Ahmad, et al. 

(2025) make the case for cloud-first pipelines to help systems remain responsive and 

interoperable across different settings [4]. 

 

Still, there are real limitations. Many AI models today are built around single diseases or narrow 

populations, which makes them hard to apply more broadly. Mental health tools, in particular, 

face hurdles around fairness and transparency. Trust matters a lot here, and most systems aren’t 

quite there yet. Even when the goal is to make predictions more personal and real-time, many 

models lag behind, especially with complex conditions like anxiety or metabolic disorders. The 

data landscape doesn’t help either. It’s fragmented. Information is spread across wearables, 

medical charts, and genomic databases, and trying to bring that all together takes serious 

coordination and a clear ethical framework. 
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1.3 Research Objectives 

 

This study aims to develop and evaluate a clinically-informed, scalable AI framework capable of 

accurate prediction and early detection across both physical and mental health conditions. It 

seeks to integrate diverse data sources, including wearable sensor data, electronic health records, 

behavioral logs, and genomic profiles, into a unified machine learning pipeline optimized for 

real-world deployment. Specifically, the research aims to design models that balance high 

predictive performance with interpretability and fairness, ensuring clinical trustworthiness and 

ethical viability. By addressing the dual challenge of model scalability and medical 

contextualization, the study aspires to contribute actionable insights and system-level 

innovations in the domain of predictive healthcare. 

 

2. Literature Review 

 

2.1 Related Works 

 

AI is carving out a growing role in healthcare, driven by the need for more accurate, scalable, 

and responsive systems. The earliest tools in this space leaned heavily on rule-based logic and 

statistical learning, but that started to shift with the rise of deep learning. One turning point was 

Nasiruddin et al. (2024), who showed that convolutional neural networks could actually 

outperform dermatologists at classifying skin lesions when trained on large, labeled image 

datasets [12]. Their results didn’t just raise eyebrows, they opened the door to similar deep 

learning approaches in radiology, ophthalmology, and pathology. 

 



  

 

  

    

P a g e | 93                                                                    EuroVantage Journal of Artificial Intelligence   

 

            Pages: 87-114 
                                                                                                                                               Volume-II, Issue-II, 2025  

Since then, researchers have taken that momentum into other chronic conditions. Ahmed et al. 

(2024), for example, built an ensemble model that blends decision trees, support vector 

machines, and gradient boosting to predict diabetes outcomes using a mix of clinical and 

behavioral data [1]. Their hybrid setup beat individual models on both precision and recall, 

reinforcing the idea that no single algorithm always gets the full picture. Mahabub et al. (2024) 

took a different route by using data from wearables like smartwatches to model early warning 

signs of disease [11]. That kind of continuous monitoring holds real potential, especially for 

catching issues in people who aren’t in a clinical setting. 

 

Mental health has also started to benefit from AI, though it brings its own set of challenges. 

Zeeshan et al. (2025) put together a semi-supervised framework that uses text, voice tone, and 

behavioral cues to detect signs of depression in underserved populations [17]. The fact that their 

model performed well even with limited labeled data is important, since mental health datasets 

are often small and noisy. Zhang et al. (2022) explored this same problem from another angle, 

using GANs to generate synthetic training data and deal with class imbalance [19]. And on the 

language front, Chattopadhyay et al. (2023) showed that transformer models trained on social 

media posts could classify anxiety levels with surprising accuracy, getting an F1 score north of 

0.87 [3]. These kinds of studies are pushing the field beyond traditional diagnostic tools into 

more context-aware approaches. 

 

There's also a growing push to make these models more transparent and fair. Mahabub et al. 

(2024) developed a decision support system that pairs CNNs with SHAP-based interpretability 

tools, letting clinicians trace predictions back to specific inputs like lesion size or glucose 

fluctuations [10]. That’s useful not only for building trust but also for catching potential biases, 

especially those tied to underrepresented groups. In a different domain, Pant et al. (2024) 

worked on predicting how patients respond to different drugs using genomic data [13]. The end 

goal is to match people with treatments that fit their molecular profile, a cornerstone of precision 
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medicine. Scaling all this up is still a challenge. Das et al. (2025) tackled the problem with a 

spatial data governance framework that makes it easier for hospitals, telehealth systems, and 

devices to share information in a secure and efficient way [5]. In follow-up work, Das, Ahmad, 

et al. (2025) looked at cloud-native setups that can handle growing demand and deliver real-time 

model outputs without compromising data regulations like HIPAA or GDPR [4]. Getting the 

infrastructure right matters if AI is going to move from pilot projects to everyday healthcare 

tools. 

 

2.2 Gaps and Challenges 

 

Even with the progress outlined earlier, there are still some serious hurdles keeping AI models 

from moving out of the lab and into clinical practice. One of the biggest sticking points is 

generalizability. A lot of models are trained on data that comes from narrow, fairly uniform 

populations, often from the same geographic or socioeconomic backgrounds. That kind of 

homogeneity doesn’t translate well when the model is exposed to real-world diversity. You end 

up with systems that quietly underperform, especially for patients from marginalized groups or 

those with uncommon comorbidities. In some cases, the model doesn’t just miss, it misclassifies 

in ways that can reinforce existing disparities. Another issue is how poorly we’ve handled the 

integration of different types of health data. There’s been plenty of work on imaging, genomics, 

and electronic health records, but most of it happens in silos. Few models actually bring these 

together in a meaningful, coherent way. That’s a missed opportunity. A model that only looks at 

phone usage, for example, might flag someone as high-risk for anxiety, but without any 

physiological data or clinical history, it can’t really tell whether that risk is real or just a false 

alarm. Without good strategies for combining these sources, the picture remains incomplete. 

 

Then there's interpretability, which is still a major open question. Tools like SHAP and LIME 

have helped crack open the black box a bit, but they’re not always usable in clinical settings. In 
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fast-paced environments like ERs or mental health triage, explanations need to be quick and 

intuitive. If a model spits out a probability without clearly showing what it’s basing that on, 

whether it’s a symptom, a pattern in past behavior, or something else, clinicians are going to 

struggle to trust it. The problem only gets trickier with deep learning models that rely on high-

dimensional data. It’s hard to explain a decision when the features influencing it don’t line up 

with how clinicians think. Mental health, in particular, brings its own set of complications. 

There aren’t always clear biological markers, and the symptoms can shift depending on the 

setting, the day, or even the person observing. That makes labeling messy and subjective, which 

in turn makes the training data noisy. On top of that, mental health data is often scattered across 

different apps, journals, and clinical systems. This fragmentation not only makes the data sparse, 

but also raises privacy and ethical issues that make collaboration hard. It’s one thing to work 

with a well-labeled MRI dataset. It’s another to piece together a person’s mental health from 

scattered and sensitive sources. 

 

Scalability is another blind spot. We’ve seen some models hit impressive benchmarks under 

ideal conditions, plenty of computing power, clean data, and no time constraints. But that’s not 

how most real-world settings work, especially in places with limited infrastructure. If you want 

to deploy a model on a smartphone or wearable device in a rural clinic, it needs to run efficiently 

and handle messier input. Work like Das et al. (2025) has made headway on this front, but most 

deployed systems still don’t get tested thoroughly for things like latency, synchronization, or 

how they handle missing data [4][5]. This study is trying to move things forward by focusing on 

three areas where progress has lagged: making models that generalize better across both clinical 

and demographic boundaries, figuring out how to bring different types of health data into a 

single model, and building systems that actually work in the wild, not just on a server rack. The 

goal isn’t to chase the best accuracy score. It’s to build something practical, an AI framework 

that’s clinically relevant, interpretable enough to be trusted, and portable enough to work where 

it’s actually needed, in both mental and physical health settings. 
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3. Methodology 

 

3.1 Data Collection and Preprocessing 

 

Data Sources 

 

We built this study on a diverse, multi-layered dataset pulled from four main sources: wearable 

sensors, electronic health records (EHRs), behavioral logs from smartphones, and genomic 

databases. The wearable data included continuous signals like heart rate variability, skin 

temperature, step counts, oxygen saturation, and sleep quality. These were recorded by FDA-

cleared smartwatches and fitness bands. Each participant wore a device for at least six months, 

which gave us enough runway to observe trends over time and spot meaningful shifts in 

physiology. From hospital systems, we obtained EHRs covering basic demographics, diagnostic 

codes (ICD), medication history, lab results, and clinical notes. To keep things consistent across 

institutions, we used a shared data model and merged duplicates through a master patient index 

that followed strict de-identification rules. We also collected mobile usage data from participants 

who opted in via an app. That stream included screen time, typing speed, call and message 

activity, and patterns of app use, especially around social media and health tools. Genomic data 

came from two sources: publicly available biobank repositories and, for a smaller group of 

participants, sequencing data collected with informed consent. We worked with both SNP 

profiles and gene expression matrices. Our participant pool was carefully chosen to reflect a mix 

of ages, genders, income levels, and regions. In total, the dataset included more than 12,000 

individuals, split between those managing chronic or mental health conditions and those without 

any diagnoses. This setup gave us enough contrast to build models that could generalize across 

both healthy and at-risk populations. 
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Data Preprocessing 

 

Before getting to the modeling work, we spent a good amount of time cleaning, structuring, and 

aligning the data. For the wearable signals, we resampled the time-series into hourly and daily 

summaries. Outliers were flagged using interquartile ranges and smoothed with moving 

averages. When sensors dropped out, we filled in the gaps using a mix of k-nearest neighbors 

and forward-fill, depending on how much data was missing and how it behaved. In the EHRs, 

structured fields like diagnosis codes and medication names were either one-hot encoded or 

grouped into bins. Free-text clinical notes went through a named entity recognition pipeline, 

followed by TF-IDF to pull out key medical concepts that might matter downstream. Mobile 

behavior logs were broken down into 15-minute blocks and normalized for each user. That 

helped reduce bias from people who, say, use their phones way more than others. We also 

trimmed features that were too sparse or carried little information, using mutual information and 

entropy as guides. 

 

The genomic data took a bit more finesse. We normalized variant calls, log-transformed the 

expression data, and filtered out genes with very low expression. Then we ran PCA to reduce the 

feature space, keeping components that captured over 95 percent of the variation in the data. 

Finally, we lined everything up across the different sources. All observations were matched by 

time window, so we knew that a physiological reading, a behavioral shift, and a clinical event 

happening on the same day were tied to the same moment in a person’s life. Once the data was 

aligned, we split it into training, validation, and test sets using stratified sampling to make sure 

the label distributions stayed intact. For mental health in particular, where some classes were 

underrepresented, we applied synthetic sampling to even things out and make sure our models 

wouldn’t overfit to the more common cases. 
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Fig.1. Key data preprocessing steps 

 

3.2 Exploratory Data Analysis 

 

The unified dataset compiled for this study integrates physiological, behavioral, and clinical data 

to support multi-dimensional health risk prediction. The first step of EDA involved assessing the 

distribution of core biometric signals captured from wearable devices. The average heart rate 

among participants follows an approximately normal distribution centered around 70 beats per 

minute, with a standard deviation of about 10 bpm. While most participants exhibit heart rates 

within a healthy range, the presence of a slightly right-skewed tail indicates elevated resting 

heart rates in a small subset, which may correlate with underlying cardiovascular or stress-

related conditions. This distribution confirms expected variability across the population and 

supports the inclusion of heart rate as a feature in risk stratification models. A correlation 

heatmap was generated to understand interdependencies among physiological, behavioral, and 

clinical variables. Strong positive correlations were observed between screen time and mental 

health score, suggesting that extended digital device use is associated with higher psychological 
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distress. Conversely, sleep hours exhibited a mild negative correlation with both mental health 

score and risk label, reinforcing existing evidence linking sleep deprivation with elevated mental 

and physical health risks. Glucose level correlated moderately with age and diagnosis class, 

validating the inclusion of metabolic indicators in predictive modeling. Importantly, 

multicollinearity was minimal, ensuring that individual variables could contribute independently 

to model performance. 

 

 

Fig.2. Distribution of average heart rate and correlation heatmap analysis 

 

To further examine variable importance in relation to health outcomes, we stratified participants 

by their assigned risk labels and compared their average sleep durations. Participants in the 

high-risk group showed significantly lower median sleep hours, with a narrower interquartile 

range, indicating both sleep deprivation and irregular sleep patterns in this segment. The 

consistency of this trend underscores the potential of sleep data from wearables as a non-

invasive yet powerful predictor of chronic disease onset and mental health decline. Next, we 

explored the relationship between screen time and mental health score in a scatterplot stratified 

by risk group. A visible trend emerged where individuals with higher screen exposure reported 

elevated distress scores, particularly among those flagged as high risk. The dispersion of data 

points in the upper-right quadrant reinforces concerns over behavioral addictions and their 
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psychological implications. The clustering patterns also suggest the possibility of defining 

digital behavioral thresholds beyond which the probability of mental health deterioration sharply 

increases. 

 

 

Fig.3. Analysis of sleep hours and screen time versus mental health 

 

The categorical distribution of diagnoses provided insights into the sample composition. 

Approximately 30 percent of the participants reported no chronic or mental health diagnosis, 

while the remainder were distributed among diabetes, hypertension, and depression. The 

relatively balanced representation of mental and physical health conditions enables comparative 

modeling and supports the study’s goal of developing unified prediction architectures for both 

domains. The distribution also suggests that depression is not underrepresented in the dataset, 

which is critical for reducing algorithmic bias during model training. Finally, a bivariate 

scatterplot was used to examine interactions between step count and glucose level across 

diagnostic categories. A negative trend was apparent for individuals with diabetes, indicating 

that higher physical activity is associated with lower glucose levels, consistent with clinical 

expectations. In contrast, individuals classified with depression or no diagnosis exhibited weaker 

or no visible association. This divergence reinforces the need for condition-specific feature 

weighting in predictive modeling. It also highlights how the integration of wearable-derived 

metrics with clinical lab values can offer richer context for risk assessment. 



  

 

  

    

P a g e | 101                                                                    EuroVantage Journal of Artificial Intelligence   

 

            Pages: 87-114 
                                                                                                                                               Volume-II, Issue-II, 2025  

 

Fig.4. Distribution of average heart rate and correlation heatmap analysis 

 

3.3 Model Development 

 

We approached model development with a clear goal: to gradually build up from simple, 

interpretable models to more complex architectures that could pick up on the layered temporal 

and multi-source patterns in the combined healthcare and behavioral dataset. The process started 

with straightforward baselines and moved toward deeper sequence models designed to handle 

both time-dependent signals and data coming in from different sources. To begin, we built a few 

foundational models, Logistic Regression and Decision Trees, to set a performance baseline 

using static features like average heart rate, sleep duration, glucose levels, screen time, and 

encoded clinical diagnoses. Logistic Regression gave us a quick check on whether the problem 

was linearly separable, while Decision Trees added some flexibility for feature interactions and 

non-linear patterns. We used stratified 5-fold cross-validation to make sure class balance was 

preserved and to avoid any data leakage. AUC and F1-score were the key metrics we used to 

evaluate how these early models held up. 

 

Once we had a handle on the basics, we brought in ensemble methods to capture more 

complexity. Random Forest and XGBoost were both tuned using randomized search across 

parameters like the number of trees, depth, and split criteria. These models consistently 
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outperformed the earlier ones, especially in handling noisy or outlier-prone wearable data. 

XGBoost in particular offered strong performance across both precision and recall. Feature 

importance scores showed that sleep duration, glucose, and screen time mattered most, which 

lined up with what we’d already noticed during our exploratory analysis. These insights also 

helped shape how we approached the deep learning phase. The first deep model we built was a 

Multilayer Perceptron, using a fully connected network to process all the static and engineered 

features. It had three hidden layers with ReLU activations, batch normalization, and dropout to 

avoid overfitting. We trained it using Adam with a learning rate of 0.001 and early stopping 

based on validation loss. The MLP handled non-linear relationships well, but it wasn’t built to 

recognize patterns over time. That became the next challenge.  

 

To bring in temporal awareness, we turned to LSTM networks. We built sequences using 

resampled data, hourly to daily windows of heart rate, step count, and screen time, and gave the 

model up to 72 hours of lookback per input. The LSTM used 128 hidden units, recurrent 

dropout, and a time-distributed dense layer for classification. It picked up on longer-term trends 

and helped identify high-risk cases that develop gradually over time. We also trained a 

bidirectional version of the LSTM to pull in both past and future context, which helped reduce 

false negatives in detecting stress linked to disrupted sleep. We then layered in attention 

mechanisms to help the model focus on moments that mattered most. By giving more weight to 

key time steps, like sudden spikes in screen time or irregular heart rate patterns, the attention-

augmented LSTM improved its ability to spot subtle changes that might otherwise get lost. This 

especially helped in borderline mental health cases, where a single variable on its own might not 

raise any alarms. 

 

To tie everything together, we built a hybrid model that used both convolution and recurrence. 

We applied one-dimensional convolutional layers to extract local patterns from wearable time-

series data, then passed those features to LSTM layers to understand how they played out over 



  

 

  

    

P a g e | 103                                                                    EuroVantage Journal of Artificial Intelligence   

 

            Pages: 87-114 
                                                                                                                                               Volume-II, Issue-II, 2025  

time. This CNN-LSTM setup proved more resilient to noisy or inconsistent inputs, especially in 

cases where step count data was patchy or irregular. The CNN layers helped smooth out the 

noise while the LSTM layers tracked longer-term dynamics. We also explored ensembling to 

combine strengths from different models. A stacked ensemble pulled together predictions from 

XGBoost, LSTM, and CNN-LSTM, with a meta-learner on top, a Logistic Regression model 

trained to blend their outputs. We tested a soft voting ensemble as well, where models were 

weighted based on how well they performed on the validation set. These ensemble setups 

consistently outperformed any individual model, showing the value in merging static and 

temporal perspectives. Throughout the process, we kept interpretability in focus. For tree-based 

models, we used SHAP values to trace how much each feature contributed to a given prediction. 

For deep models, we visualized attention weights and LSTM cell activations to see which time 

points influenced outcomes the most. Finally, we benchmarked each model’s inference time, 

with the most optimized CNN-LSTM and XGBoost versions delivering sub-100ms responses, 

fast enough for real-time use on phones and wearable devices. 
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Fig.5. Model development analysis 

 

4. Results and Discussion 

 

4.1 Model Training and Evaluation Results 

 

Model training was conducted in progressive phases, beginning with traditional baselines and 

culminating in advanced neural and ensemble architectures. The dataset was stratified into 

training (70%), validation (15%), and test (15%) sets, ensuring consistent class distributions of 

the binary risk label across splits. Evaluation was primarily based on the area under the receiver 

operating characteristic curve (AUC), F1-score, accuracy, and precision-recall trade-offs. The 

objective was to assess not only overall discriminative power but also the model’s capacity to 



  

 

  

    

P a g e | 105                                                                    EuroVantage Journal of Artificial Intelligence   

 

            Pages: 87-114 
                                                                                                                                               Volume-II, Issue-II, 2025  

identify high-risk individuals without inflating false positive rates, a critical balance in clinical 

and mental health contexts. Among baseline models, Logistic Regression achieved a test AUC 

of 0.72 and an F1-score of 0.63. While interpretable and computationally efficient, it struggled 

to model non-linear interactions in features like screen time, sleep variability, and glucose level. 

The Decision Tree baseline slightly improved performance to an AUC of 0.75, benefiting from 

its ability to partition feature space more adaptively. However, these models suffered from 

overfitting in cases with highly correlated wearable and behavioral features. 

 

Tree-based ensemble models demonstrated significant performance gains. XGBoost achieved an 

AUC of 0.84 and an F1-score of 0.76 on the test set, with Random Forest trailing slightly at an 

AUC of 0.81. Hyperparameter tuning via randomized search revealed that limiting tree depth (to 

avoid overfitting) and applying regularization on leaf weights improved generalization. Feature 

importance analysis showed that average sleep duration, screen time, and glucose level were 

consistently the top predictors, confirming the behavioral-physiological interplay uncovered in 

the EDA phase. SHAP analysis further revealed that elevated screen time and reduced sleep 

hours were major contributors to the model's high-risk predictions. Deep learning architectures 

showed clear advantages when modeling sequential dependencies and integrating multi-modal 

temporal signals.  The Multilayer Perceptron (MLP), trained on static features, achieved an AUC 

of 0.78, outperforming baselines but underperforming relative to temporal models. The Long 

Short-Term Memory (LSTM) model, trained on sliding windows of time-series data from 

wearable and behavioral inputs, reached an AUC of 0.86 and an F1-score of 0.78. Its 

bidirectional variant (Bi-LSTM) further improved generalization, pushing the AUC to 0.88 and 

achieving a precision of 0.81, especially effective at capturing subtle shifts in mental health 

score trajectories.  

 

The attention-augmented LSTM model delivered superior performance, with a final AUC of 

0.91, an F1-score of 0.82, and a recall of 0.85. Attention weights were visualized to identify key 
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time steps, such as nights of reduced sleep or clusters of elevated screen time, that consistently 

contributed to risk identification. This increased interpretability was especially valuable for 

explaining predictions in sensitive healthcare deployments. Furthermore, the hybrid CNN-

LSTM model demonstrated resilience to noisy wearable inputs and performed strongly in 

conditions with irregular data capture. It achieved an AUC of 0.89 and proved particularly 

robust in predicting risk among patients with fragmented or sparse time-series data. Ensemble 

strategies produced the most balanced and reliable performance across evaluation metrics. The 

stacked model combining XGBoost, attention-LSTM, and CNN-LSTM achieved a final AUC of 

0.93 and F1-score of 0.85. Its meta-learner, trained on first-level predictions, demonstrated 

strong generalization across both physical and mental health subgroups. Weighted soft voting 

ensembles showed similar performance (AUC of 0.92), with weights optimized to penalize high 

false positive rates. These results indicate that combining diverse architectural strengths, local 

pattern extraction, long-term temporal modeling, and high-dimensional feature weighting, yields 

a robust framework for scalable and interpretable healthcare risk prediction. 

 

Latency benchmarks confirmed that both the XGBoost and CNN-LSTM models met real-time 

deployment requirements, with mean inference times under 100 milliseconds per instance on 

standard CPU environments. The attention-based LSTM, while more computationally intensive, 

remained within acceptable deployment thresholds and provided added clinical value through 

transparent prioritization of input sequences. Collectively, these results validate the feasibility of 

fusing wearable, behavioral, and clinical data into a unified model pipeline capable of 

identifying high-risk individuals with both precision and accountability. The performance 

differentials between model classes underscore the importance of capturing temporal dynamics 

and cross-domain feature interactions when predicting complex, non-linear health outcomes. 
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Fig. 6. Model Evaluation Results 

 

4.2 Discussion and Future Work 

 

Our results show that when you bring together structured records, time-series readings, and 

behavioral data into modern AI architectures, you can spot high-risk health profiles more 
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reliably than with older methods. For example, Logistic Regression and Decision Trees gave us 

a baseline AUC of around 0.72 and 0.75. They’re solid, but they tend to miss the more tangled 

relationships in the data (Shah et al. 2025) [14]. When we moved to XGBoost, the AUC jumped 

to 0.84, thanks to its ability to handle non-linear feature interactions and noisy inputs, something 

others have seen too in heart disease and diabetes studies (Shah et al. 2025) [14]. Then, by 

treating the data as sequences with LSTM and Bi-LSTM models, we pushed AUCs to 0.86 and 

0.88. Capturing how measurements and behaviors unfold over time matters, especially in mental 

health tracking where changes are gradual and patterns can be subtle (Zhang & Smith 2025) 

[18]. 

 

Adding an attention layer gave us the best single-model results, an AUC of 0.91 and F1 of 0.82. 

Beyond the raw numbers, attention weights let us peek into what the model cares about. We saw 

spikes around disrupted sleep and long stretches of screen time, which mirrors findings in 

behavioral medicine (Li et al. 2025) [8] and De Bois et al. 2020 [6]. We also tested a hybrid 

CNN-LSTM setup, and it held up well even when wearable data was spotty or noisy. That 

robustness and transparency aligns with other real-world mobile health work (Al Olaimat & 

Bozdag 2024) [2]. Finally, our top performer was a stacked ensemble of XGBoost, 

attention-LSTM, and CNN-LSTM. It hit an AUC of 0.93 with an F1 of 0.85, supporting the 

view that blending diverse models can raise the bar in healthcare applications (Li et al. 2025) 

[8]. 

 

Speed matters too. All our models ran inference in under 130 ms, and both the stacked ensemble 

and the CNN-LSTM clocked in below 100 ms. That keeps them practical for wearables or edge 

devices, where you need results in real time. The confusion matrix for the stacked ensemble 

(TP = 168, FP = 40, TN = 260, FN = 32) translates to recall of 0.88 and precision of 0.87. In 

other words, it balances catching true risks with keeping false alarms in check, a key point in 

avoiding overfitting and maintaining interpretability. 
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Table 1. Summary of Model Evaluation Results 

 

Model AUC F1 Score Precision Recall Inference 

Time 

(ms) 

Logistic 

Regressio

n 

0.72 0.63 0.65 0.62 20 

Decision 

Tree 

0.75 0.65 0.66 0.64 25 

Random 

Forest 

0.81 0.74 0.75 0.73 60 

XGBoost 0.84 0.76 0.78 0.75 70 

MLP 0.78 0.70 0.72 0.69 45 

LSTM 0.86 0.78 0.79 0.76 90 

Bi-LSTM 0.88 0.79 0.81 0.77 100 

Attention-

LSTM 

0.91 0.82 0.83 0.85 120 
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CNN-

LSTM 

0.89 0.80 0.81 0.82 80 

Stacked 

Ensemble 

0.93 0.85 0.87 0.88 95 

Weighted 

Ensemble 

0.92 0.84 0.86 0.86 92 

 

Future Work 

 

We’ve seen promising results so far, and there’s room to push this even further. One idea is to 

bring in transformer-based models, think Temporal-Feature Cross Attention (TFCAM), to 

capture how different signals interact over time. In fact, Li and colleagues showed that these 

kinds of architectures can hit an AUC of 0.95 while still offering clear insights into feature 

dynamics during chronic disease progression (Li et al. 2025) [9]. Another path worth exploring 

is blending attention with explanation methods. For example, the Quantitative Explainability 

Framework (QEF) mixes attention scores with SHAP values, so clinicians can peek at both local 

and overall feature effects (Springer 2025) [7]. That extra layer of transparency could go a long 

way toward building confidence in the model. Of course, we’ll need to test these approaches in 

the real world, where data streams aren’t perfect and devices vary. Running field trials, 

especially in remote or under-resourced settings, will help us spot weak spots in robustness and 

long-term stability. We might find that adaptive inference thresholds are key to keeping things 

safe and reliable over time. 
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Privacy is another big piece. Federated learning could let us train across multiple hospitals 

without handing over raw patient data, which would help us stay on the right side of regulations 

in precision healthcare. Lastly, we’re excited about moving beyond prediction and into 

intervention. Imagine a system that not only flags risk but also launches a personalized digital 

therapy in response. Tying our predictive engine to tailored care pathways is how we’ll turn 

these models into real-world, end-to-end solutions. By blending new architectures, real-world 

testing, explainability tweaks, and privacy-preserving techniques, we’re aiming to make this 

research meaningful in everyday clinical practice. 

 

5. Conclusion 

 

This research aimed to create an AI system that’s both scalable and transparent, built on solid 

clinical foundations, and capable of forecasting physical and mental health by weaving together 

data from wearables, medical records, app logs, and genomics. We tackled it in stages, starting 

with tried-and-true baseline methods, then moving into deep sequence networks, and finally 

mixing everything into hybrid ensembles. Along the way, we found that marrying medical 

expertise with modern machine learning boosts accuracy, keeps the results meaningful for 

clinicians, and lets the system react in real time. Across all our experiments, the takeaway was 

clear: you cannot ignore time-based patterns or interactions between different data streams. 

Tree-based ensembles such as XGBoost were solid for a first pass, but long short-term memory 

networks really shone when it came to handling sequential signals. Adding attention layers to 

those LSTMs not only raised classification scores but also highlighted key moments in a 

patient’s behavior or physiology that drove risk predictions.  

 

Combining convolutional layers with LSTM further steadied performance when data were noisy 

or patchy, an important quality if you want to run these models on a user’s phone or an edge 

device. In the end, a stacked ensemble mixing XGBoost, attention-equipped LSTMs, and 
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CNN-LSTMs came out on top, hitting an AUC of 0.93, an F1-score of 0.85, and sub-100 ms 

inference times.We never let raw metrics become the only goal. Throughout the pipeline, we 

weighed interpretability, generalizability, and ease of deployment equally with accuracy. Tools 

like SHAP values and attention-map visualizations helped us trace why the model made each 

call, and optimizations for speed and fairness across different patient groups ensured the 

framework would work in real healthcare environments. Bringing in genomic markers, behavior 

patterns, and longitudinal trends gave us a richer, more nuanced picture of risk, moving well 

beyond one-off clinical snapshots.  

 

What this study makes abundantly clear is that scalable AI married to clinical know-how isn’t a 

novelty, it’s a necessity. Healthcare systems everywhere are buckling under chronic illness, 

mental health challenges, and thin resources. AI that is explainable, context-aware, and nimble 

can do more than boost a few percentages. It can lay the groundwork for truly proactive, highly 

personalized care. Looking ahead, we’ve set the stage for end-to-end health platforms that don’t 

just flag risks but actively guide interventions in the moment. Our next move is to roll these 

models into live clinical settings, refine them with ongoing feedback, and weave them into 

everyday workflows. That way, AI won’t just forecast health outcomes, it will help shape them. 
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