Pages: 64-69

Shovateds Volume-Il, Issue-Il, 2025

Declarative Power: The Enduring Relevance of SQL in the Age of
Big Data

!Anas Raheem, 2Hadia Azmat
LAir University, Pakistan
2University of Lahore, Pakistan

Corresponding Author: anasraheem48@gmail.com

Abstract

Structured Query Language (SQL), a declarative language introduced in the 1970s, continues to
play a critical role in modern data management, despite the emergence of various big data
frameworks and NoSQL alternatives. In an era characterized by massive, heterogeneous data
sources and real-time analytics, the enduring relevance of SQL lies in its simplicity,
expressiveness, and capacity for abstraction. This paper explores the resurgence of SQL in big
data ecosystems, particularly through its integration with distributed computing platforms such
as Apache Hive, Spark SQL, and Google BigQuery. It investigates how SQL has adapted to meet
new data processing challenges while maintaining its declarative philosophy. By examining case
studies, technological integrations, and performance considerations, this study highlights the
evolving yet foundational role of SQL as a unifying layer across traditional relational databases
and modern data platforms.

Keywords: SQL, declarative programming, big data, distributed databases, Spark SQL, Hive,
data abstraction, data lakes, query optimization, relational models

I. Introduction

In the rapidly evolving landscape of data management, Structured Query Language (SQL) has
maintained a pivotal role since its inception in the 1970s. Originally designed for relational
databases, SQL's declarative nature—allowing users to specify what data is needed without
detailing how to retrieve it—has proven remarkably resilient[1]. As the era of big data dawned,
characterized by unprecedented volumes, velocities, and varieties of data, many predicted the
obsolescence of SQL in favor of more flexible, schema-less alternatives like NoSQL systems.
However, SQL has not only endured but thrived, adapting through extensions and integrations
with distributed systems. This paper explores the declarative power of SQL and its continued
relevance in big data environments, drawing on its evolution, advantages, and integrations with
modern technologies. By examining historical context, current applications, and future

Page | 64 EuroVantage Journal of Artificial Intelligence

https://evjai.com/index.php/evjai/article/view/25
https://evjai.com/index.php/evjai/article/view/25

Pages: 64-69

;céﬁf‘rf?,«\fﬁﬂﬁiﬁg.vy Volume-ll, Issue-Il, 2025

trajectories, we argue that SQL's standardization, efficiency, and ecosystem support ensure its
indispensability amid growing data complexities.

1. The Evolution of SQL: From Relational Databases to Big Data

SQL's journey began with Edgar F. Codd's relational model in 1970, formalized into a standard
language by IBM in the 1970s and standardized by ANSI in 1986. Initially tailored for
structured, tabular data in relational database management systems (RDBMS) like Oracle and
MySQL, SQL emphasized ACID (Atomicity, Consistency, Isolation, Durability) properties for
transactional integrity. The advent of big data in the early 2000s, driven by the explosion of
internet-scale applications, challenged these foundations with demands for horizontal scalability
and handling unstructured data. Rather than fading, SQL evolved through variants like NewSQL
and SQL-on-Hadoop, incorporating distributed computing principles while retaining its
declarative syntax. For instance, systems like Google BigQuery and Amazon Redshift extended
SQL to petabyte-scale analytics, demonstrating its adaptability. This evolution underscores
SQL's foundational strength: its ability to abstract complex operations, allowing developers to
focus on business logic rather than underlying mechanics.

The integration of SQL with big data frameworks has been key to its persistence. Early big data
tools like Apache Hadoop relied on MapReduce for processing, but SQL interfaces such as
Apache Hive introduced HiveQL, a SQL-like language that translated queries into MapReduce
jobs. This bridged the gap for data professionals accustomed to SQL, reducing the learning curve
and accelerating adoption[2]. By the mid-2010s, SQL had become the lingua franca for data
querying across diverse platforms, evolving to support real-time streaming and machine learning
integrations. Its standardization ensures portability, enabling seamless transitions between on-
premises and cloud environments, which is crucial in hybrid big data architectures.

DB-Engines Ranking Oracle
- MySQL
2k Microsoft SQL Server
AAAAAA . PostgreSQL
LSS e o o o A * e TS POG %4 -+ MongoDB
1k -»- |BM Db2
Redis
-#- Elasticsearch
-+ Microsoft Access
400 SQLite
Cassandra
200 -~ MariaDB
) Splunk
“f,.l—- Frrsire 8952 2 3 8- B0 edua: GREYT W Teradata
100 “_“....l"“w ~* Hive

40

20

Score (logarithmic scale)

) February 2019, DB-Engines.com

2013 2014 2015 2016 2017 2018 2019 yizy

Page | 65 EuroVantage Journal of Artificial Intelligence

Pages: 64-69

Shovateds Volume-Il, Issue-Il, 2025

Figure 1 2019 Database Trends: SQL Vs. NoSQL - Top Databases

I11. Challenges Posed by Big Data and SQL's Adaptability

Big data introduces the "3Vs"—volume, velocity, and variety—that strain traditional RDBMS.
Volume refers to terabytes or petabytes of data exceeding single-machine capacities; velocity
demands real-time processing; and variety encompasses structured, semi-structured, and
unstructured formats like JSON or logs[3]. Traditional SQL databases struggled with scalability,
often requiring vertical scaling that proved costly and limited. However, SQL's adaptability
shone through innovations like sharding and partitioning in distributed SQL engines, allowing
horizontal scaling across clusters.

To address velocity, SQL extensions incorporated streaming capabilities, as seen in Apache
Kafka with KSQL, enabling declarative queries on live data streams. For variety, modern SQL
supports nested data structures and JSON functions, blurring lines with NoSQL[4]. Challenges
like data consistency in distributed systems are mitigated by eventual consistency models in SQL
variants, balancing performance with reliability[5]. SQL's optimizer advancements, leveraging
cost-based planning and parallel execution, further enhance its handling of big data workloads,
making it suitable for analytics where query efficiency is paramount. This adaptability ensures
SQL remains relevant, even as big data ecosystems grow more heterogeneous.

IV. SQL in Modern Big Data Ecosystems

In contemporary big data stacks, SQL serves as a unifying layer across tools like Apache Spark,
where Spark SQL allows declarative querying of DataFrames and integrates with machine
learning pipelines[6]. Platforms such as Snowflake and Databricks leverage SQL for cloud-
native data warehousing, supporting elastic scaling and separation of storage from compute.
These ecosystems benefit from SQL's familiarity, enabling data engineers, analysts, and
scientists to collaborate without relearning paradigms.

SQL's role extends to data lakes, where tools like Presto and Trino provide federated querying
across Hadoop Distributed File System (HDFS), S3, and relational stores[7]. This federation
allows SQL to query disparate sources without data movement, reducing latency and costs. In
Al-driven big data, SQL interfaces with vector databases for semantic search, as in PostgreSQL
with pgvector extensions. Case studies from companies like Netflix and Uber highlight SQL's
use in real-time analytics, where declarative queries power dashboards and recommendations,
proving its integration enhances ecosystem efficiency.

Page | 66 EuroVantage Journal of Artificial Intelligence

Pages: 64-69

Sovegs Volume-Il, Issue-Il, 2025

Introducing Big Data Clusters - SQL Server Big Data Clusters | Microsoft Docs

Custom Bl Analytics % Active Directory
s ~
Data virtualization
Kubernetes namespace Languages
External data Operational query with master pool TsaL
sources *
SOL Server = SQL Server | or et it Contained availability Python
= SEE gouw [} controtier (ResT} PrSmark
Teradata yopar
MongoDB ¢ Spark Scala
Scale-out query performance with compute pool Distributed table with data pool
Oracle Spark 50L
5QL compute SQL compute S0l compute 4 sy mal B B
node node node . ' ' - R
¢ SparkR
L - o B sparklyr
Data Lake A with Dedicated BE3
storage Poo.nalyllcs ¢ IHCBDES (===} Dedicated analytics with Spark pool Java
sqQL sSQL saL
Spark Server Spark Server | === Spark Server Spark s Spark
HDFS tiering
534 ADLS Gen2 HDF5

Remote storage

Figure 2 Big data options on the Microsoft SQL Server platform - SQL Server

V. Advantages of Declarative Querying in SQL

The declarative paradigm of SQL—specifying desired results rather than procedural steps—
offers profound advantages in big data. It abstracts complexity, allowing optimizers to choose
efficient execution plans, which is vital for large-scale queries where manual optimization is
infeasible. This leads to better performance, as seen in benchmarks where SQL outperforms
imperative languages in data aggregation tasks. Security benefits include fine-grained access
controls via GRANT/REVOKE statements, ensuring compliance in regulated industries.
Scalability is enhanced through parallel processing in distributed SQL, handling massive datasets
without code rewrites[8]. Data integrity is maintained via constraints and transactions,
contrasting with schema-flexible systems prone to inconsistencies. For data scientists, SQL's
integration with tools like Python's pandas via SQLAIchemy streamlines workflows, combining
declarative querying with programmatic analysis. Overall, these advantages make SQL a robust
choice for big data, prioritizing readability and maintainability.

While NoSQL databases excel in flexibility for unstructured data and high-velocity writes, SQL
maintains superiority in scenarios requiring strong consistency and complex joins. SQL
databases are vertically scalable and schema-enforced, ensuring data validity, whereas NoSQL
offers horizontal scalability and schema-on-read for rapid iterations. In big data, SQL suits
analytical workloads with its ACID compliance, while NoSQL handles operational loads with
eventual consistency[9]. Comparisons reveal SQL's edge in query expressiveness for relational
data, but NoSQL's in handling graphs or documents. Hybrid approaches, like polyglot

Page | 67 EuroVantage Journal of Artificial Intelligence

Pages: 64-69

EuroVantage
e Volume-ll, Issue-Il, 2025

persistence, combine both, using SQL for reporting and NoSQL for ingestion. Despite NoSQL's
rise, SQL dominates in enterprise settings due to its maturity and talent pool, as evidenced by
popularity rankings where SQL-based systems outpace NoSQL in adoption.

Main Differences Between SQL and NoSQL Databases

SQL Databases NoSQL Databases

Reducing data duplication Scaling and rapid application change

Document:]SON documents; Key-value: key-value
Data Storage Model Tables with fixed rows and colums pairs; Wide-column: tables with rows and dynamic
columns; Graph: nodes and edges

Rigid Flexible

Typically doesn’t require ORMs. E.g. MongoDB
Requires ORM (object-relational mapping) documents map directly to data structures in
popular programming languages.

Data to Object
Mapping

Figure 3 When to Use NoSQL vs SQL: The Ultimate Guide for Choosing a Database

Vertical (scale-up with a larger server) Horizontal (scale-out across commodity servers)

Looking ahead, SQL's relevance will grow with advancements in Al and edge computing.
Innovations like SQL for vector embeddings enable declarative queries in generative Al,
integrating with large language models for natural language processing[10]. Federated learning
and privacy-preserving SQL extensions address data sovereignty in global big data. Quantum
computing may introduce SQL-like interfaces for hybrid classical-quantum queries.

Sustainability efforts will optimize SQL for energy-efficient querying in green data centers. As
big data evolves toward "small data” paradigms for efficiency, SQL's declarative power will
facilitate automated optimizations. Standardization bodies continue enhancing SQL with features
like temporal tables and graph queries, ensuring it remains future-proof.

Conclusion

SQL's enduring relevance in the age of big data stems from its declarative power, adaptability,
and integration capabilities. Despite initial challenges from big data's scale, SQL has evolved
into a cornerstone of modern ecosystems, offering advantages in security, scalability, and
efficiency over alternatives. As data volumes continue to surge, SQL's standardization and
optimizations position it as an essential tool for future innovations. Ultimately, its ability to
empower users to focus on insights rather than implementation cements SQL's legacy as the
declarative backbone of data management.

References:

Page | 68 EuroVantage Journal of Artificial Intelligence

Pages: 64-69

Sovegs Volume-Il, Issue-Il, 2025

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Fortifying Smart City loT Networks: A
Deep Learning-Based Attack Detection Framework with Optimized Feature Selection Using MGS-
ROA," in 2024 International Conference on Recent Advances in Science and Engineering
Technology (ICRASET), 2024: IEEE, pp. 1-8.

M. Bannett, "Deep Learning Powered Architectures for Intelligent Workflow Dynamics, Adaptive
Task Scheduling, and Autonomous Orchestration of Complex Processes in n8n," MetaVision
Journal of Multidisciplinary Studies (MVIJMS), vol. 1, no. 3, pp. 1-19, 2024.

M. Gupta, LangChain in your Pocket: Beginner's Guide to Building Generative Al Applications
using LLMs. Mehul Gupta, 2024.

R. V. Rayala, C. R. Borra, P. K. Pareek, and S. Cheekati, "Securing loT Environments from Botnets:
An Advanced Intrusion Detection Framework Using TJO-Based Feature Selection an d Tree
Growth Algorithm-Enhanced LSTM," in 2024 International Conference on Recent Advances in
Science and Engineering Technology (ICRASET), 2024: |IEEE, pp. 1-8.

Z. Liu, X. Li, S. Chen, G. Li, J. Jiang, and J. Zhang, "Reinforcement learning with intrinsically
motivated feedback graph for lost-sales inventory control," arXiv preprint arXiv:2406.18351,
2024.

A. Nishat, "Artificial Intelligence in Transfer Pricing: How Tax Authorities Can Stay Ahead," Aitoz
Multidisciplinary Review, vol. 2, no. 1, pp. 81-86, 2023.

V. Romanchuk, S. Kartashov, L. Tokhtieva, I. Komlev, and A. Kadyrov, "Artificial Intelligence
Technologies in Digital Modernization of Organizations," in Russian Conference on Digital
Economy and Knowledge Management (RuDEcK 2020), 2020: Atlantis Press, pp. 666-670.

M. Shruthi, T. Eedara, M. Suddamshetty, and A. Ravva, "Al Powered Document Processing
System Using LangChain & Semantic Search," Tulasi and Suddamshetty, Maniteja and Ravva,
Anjali, Al Powered Document Processing System Using LangChain & Semantic Search (March 26,
2025), 2025.

A. Nishat and A. Mustafa, "A Novel Approach to Emotion Classification with Llama3-8B:
Integrating LoRA for Efficient Training," Aitoz Multidisciplinary Review, vol. 3, no. 1, pp. 77-84,
2024.

A. Mustafa and A. Nishat, "Shielding Al Models: Overcoming Adversarial Threats in Language
Processing," Journal of Computing and Information Technology, vol. 4, no. 1, 2024.

Page | 69 EuroVantage Journal of Artificial Intelligence

