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Abstract  

The increasing global demand for energy, combined with the urgent need for sustainability, has driven 

the adoption of artificial intelligence (AI) and machine learning (ML) techniques to optimize energy 

consumption. Traditional energy management approaches often struggle to account for the complexity 

of dynamic consumption patterns, operational inefficiencies, and environmental impacts. This research 

presents a comprehensive AI-powered framework aimed at forecasting and optimizing energy 

consumption across key sectors in the USA, including urban infrastructure and institutional facilities. 

By utilizing extensive energy datasets that encompass variables such as electricity usage, peak demand, 

weather variations, and building characteristics, the study applies four advanced ML models: Random 

Forest, XGBoost, Support Vector Regression (SVR), and Long Short-Term Memory (LSTM) networks, 

to achieve high-precision consumption forecasting. To facilitate intelligent optimization and adaptive 

energy management, Reinforcement Learning (RL) techniques are employed. These techniques enable 

dynamic decision-making to minimize energy usage without compromising service quality. 

Additionally, the study incorporates K-Means clustering to categorize consumption patterns and uses 

Isolation Forests along with Autoencoders for robust anomaly detection and monitoring of unusual 

energy behaviors. To enhance predictive robustness and address challenges such as seasonality, 

volatility, and the high dimensionality of input features, the research integrates time-series feature 

engineering and unsupervised learning for dimensionality reduction. Data imbalance issues are 

addressed using strategic sampling techniques to ensure fair model training across both normal and 

extreme consumption scenarios. Model performance is rigorously evaluated using metrics such as 

RMSE, MAE, MAPE, and R², ensuring a comprehensive assessment of predictive accuracy and 

optimization effectiveness. 

 

Keywords: Energy consumption forecasting, reinforcement learning optimization, anomaly detection, 

clustering analysis, sustainable urban development, AI-driven energy management. 

 

1. Introduction 
1.1 Background 

 

The accelerating pace of urbanization and industrialization in the United States has led to 

unprecedented increases in electricity demand, straining existing infrastructure and exacerbating 

greenhouse gas emissions. 
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Traditional rule-based energy management systems often rely on static heuristics and simple statistical 

models that fail to capture the inherently nonlinear and time-dependent nature of consumption patterns 

(Barua et al., 2025; Hossain et al., 2025) [2,6]. In particular, the variability introduced by weather 

fluctuations, occupancy dynamics, and operational schedules in large institutions such as hospitals and 

municipal facilities demands more adaptive, data-driven approaches. Recent advances in machine 

learning (ML) have shown significant promise in addressing these complexities. Supervised ensemble 

methods—such as Random Forests and XGBoost—have demonstrated robust performance in short- 

and medium-term load forecasting by effectively modeling nonlinear interactions among 

meteorological, temporal, and building-specific features (Hossain et al., 2025; Reza et al., 2025) [6, 

13]. Meanwhile, deep learning architectures, notably Long Short-Term Memory (LSTM) networks, 

excel at capturing long-range dependencies in sequential data, improving forecast accuracy during 

periods of high volatility and seasonal shifts (Ahmed et al., 2025; Barua et al., 2025) [1, 2].  

 

Beyond forecasting, intelligent optimization of energy usage remains critical for operational efficiency 

and sustainability. Reinforcement Learning (RL) techniques enable autonomous control systems—such 

as HVAC operation—to learn optimal policies through interaction with their environment, yielding 

substantial energy savings without sacrificing occupant comfort (Wang et al., 2024; Kumar & Singh, 

2024)[17, 8]. Concurrently, unsupervised learning methods enhance system resilience by uncovering 

latent consumption patterns and detecting anomalies. K-Means clustering segments buildings and urban 

zones into homogeneous groups for targeted demand-side management, while Isolation Forests and 

Autoencoders provide robust detection of irregular usage events that may indicate faults or 

inefficiencies (Patel & Nguyen, [2024) [11-12]. Despite these advances, integrating forecasting, 

anomaly detection, and adaptive control into a unified framework tailored for sustainable urban and 

institutional development remains an open challenge. This research addresses this gap by developing a 

comprehensive, AI-powered platform that leverages Random Forest, XGBoost, SVR, and LSTM for 

high-fidelity forecasting; employs reinforcement learning for dynamic optimization; and utilizes K-

Means, Isolation Forest, and Autoencoders for pattern discovery and anomaly monitoring. Through 

rigorous evaluation on large-scale U.S. energy datasets, our work aims to deliver actionable insights for 

policymakers, facility managers, and urban planners, ultimately contributing to reduced operational 

costs, enhanced grid stability, and minimized carbon footprint 

 

1.2 Importance Of This Research 

 

The significance of this research extends beyond theoretical contributions, as it offers practical 

solutions to global energy challenges through AI-driven approaches. One of the most pressing issues in 

energy management is the inefficiency of traditional consumption forecasting and resource allocation 

methods, which often result in significant energy waste. AI-powered predictive models—such as 

Random Forest, XGBoost, SVR, and LSTM—can improve accuracy in demand forecasting, allowing 

energy providers to optimize distribution and reduce surplus production [1][2][6][13]. By dynamically 

adapting to fluctuations in demand, these models minimize inefficiencies and lower operational costs 

[6]. Another critical aspect of AI-driven energy management is its potential to mitigate climate change. 

The excessive consumption of fossil fuels continues to drive greenhouse gas emissions, accelerating 

global warming and environmental degradation. Reinforcement Learning–based optimization can 

facilitate the integration of renewable energy sources, such as solar and wind, into national grids by 

predicting production patterns and improving energy storage management [9][14]. Research indicates 

that AI-enhanced smart grids can improve energy efficiency by up to 20%, significantly reducing 
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carbon footprints [19]. Furthermore, unsupervised techniques like Isolation Forest and Autoencoders 

enable real-time anomaly detection in industrial energy consumption, allowing manufacturers to 

optimize processes and reduce energy waste [12][19]. 

 

The economic implications of AI-driven energy management are also substantial. By improving 

forecasting accuracy and optimizing consumption, AI can lead to significant cost savings for industries, 

households, and energy providers. Studies have shown that AI-powered demand-side management can 

reduce electricity bills by up to 30% for consumers while enhancing grid stability for utility companies 

[16]. Additionally, AI plays a crucial role in balancing energy supply and demand in deregulated 

markets, helping to prevent price volatility and reduce the financial risks associated with energy 

shortages [5]. Moreover, the integration of AI in energy systems enhances grid reliability and 

resilience. The increasing frequency of extreme weather events, cyber threats, and infrastructure 

failures poses substantial risks to energy grids. AI-driven predictive maintenance techniques can 

proactively identify potential faults in power infrastructure, preventing costly blackouts and system 

failures [8][11]. Research has shown that predictive analytics in power grid maintenance can reduce 

downtime by up to 40%, ensuring a more stable energy supply for consumers [11]. Additionally, AI-

based real-time monitoring systems can detect cyber threats and unauthorized intrusions, safeguarding 

critical energy infrastructure from attacks [17]. 

 

The social and policy-related implications of AI in energy sustainability are also noteworthy. AI-driven 

insights can aid policymakers in developing data-informed energy regulations, promoting cleaner 

energy adoption, and ensuring equitable access to resources [10]. By leveraging AI for urban energy 

planning, governments can design smarter cities that optimize resource consumption while minimizing 

environmental impact [7]. Furthermore, AI applications in energy equity can ensure fair distribution of 

electricity in underserved communities, improving access to affordable and sustainable power sources 

[15]. 

 

1.3 Research Objective 

 

The primary objective of this research is to explore how artificial intelligence (AI) and machine 

learning (ML) techniques can improve energy sustainability by predicting, analyzing, and optimizing 

energy consumption patterns. This study aims to develop AI-driven models that accurately forecast 

energy demand, identify inefficiencies, and optimize resource allocation to enhance overall energy 

efficiency. By incorporating advanced machine learning methods, the research seeks to provide data-

driven insights that help reduce energy waste, lower carbon emissions, and support the integration of 

renewable energy sources. Furthermore, this study will focus on enhancing the resilience of energy 

grids by employing AI techniques for predictive maintenance and real-time anomaly detection, 

ensuring the stability and reliability of energy systems. Another key goal is to evaluate the economic 

benefits of AI-based energy management, particularly in terms of cost savings, demand-side 

optimization, and fostering market stability. Finally, this research intends to provide actionable 

recommendations on how AI can be integrated into energy policies, aligning technological 

advancements with broader national and global sustainability goals. 

 

2. Literature Review 

 

2.1 Related Works 
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Numerous studies have investigated AI applications in energy sustainability, focusing on consumption 

prediction, grid optimization, and renewable integration. Ahmed et al. (2025) employed machine 

learning techniques to predict energy consumption in hospitals, demonstrating improved energy 

efficiency and reduced operational costs [1]. Similarly, Reza et al. (2025) applied advanced ML 

algorithms to analyze urban energy consumption patterns, aiding sustainable urban development and 

infrastructure planning [13]. Hossain et al. (2025) compared multiple forecasting models—including 

tree-based and neural network approaches—across diverse U.S. sectors, showing that ensemble 

methods significantly enhance prediction accuracy and resource management [6]. Barua et al. (2025) 

developed an AI-driven framework for Southern California that integrates spatiotemporal data to 

optimize energy use in institutional and urban settings, highlighting substantial reductions in peak 

demand and overall consumption [2].  

Another line of research examines the economic and grid-level impacts of AI in energy systems. Gazi 

et al. (2025) explored the economic implications of low-carbon technology trade using AI-driven 

analysis, emphasizing how predictive insights can guide policy and investment toward sustainable 

energy markets [4]. Chouksey et al. (2025) investigated energy generation and capacity trends in the 

USA, leveraging machine learning models to enhance production forecasting and support more 

resilient grid operations under variable supply conditions [3]. Beyond forecasting, advanced AI 

techniques such as deep reinforcement learning have been applied to smart grid optimization. Wu et al. 

(2024) introduced a deep RL–based framework that dynamically adjusts energy distribution based on 

real-time demand signals, significantly reducing energy wastage and improving grid responsiveness 

during peak and off-peak periods [18]. 

2.2 Gaps and Challenges 

 

Despite notable advancements in the application of AI and machine learning for energy sustainability, 

several critical gaps and challenges remain. One major limitation is the issue of data quality and 

availability. Many AI models rely heavily on high-resolution, real-time data, which is often difficult to 

obtain or incomplete, particularly in developing regions. As highlighted by Ahmed et al. (2025), the 

accuracy of energy consumption predictions in healthcare facilities was significantly influenced by the 

availability of granular data, suggesting that data scarcity could hinder model performance [1]. Another 

significant challenge is the generalizability of machine learning models across different sectors and 

geographic regions. Hossain et al. (2025) emphasized that models trained on sector-specific data in the 

U.S. energy market did not always perform well when applied to other sectors or locations, indicating a 

need for more adaptable, transfer learning–based approaches [6]. Furthermore, most existing studies 

focus on short-term forecasting, while long-term predictive models—critical for infrastructure planning 

and policy development—remain underexplored. 

 

Model interpretability also presents a pressing challenge. Although complex AI techniques such as 

deep learning and ensemble methods offer high predictive power, their “black-box” nature makes it 

difficult for stakeholders to trust and adopt these solutions in critical energy management decisions 

(Wu et al., 2024) [18]. Transparent and explainable AI models are essential for increasing stakeholder 

acceptance and regulatory compliance. 

 

Economic and policy integration gaps further complicate the effective deployment of AI-driven energy 

solutions. While Gazi et al. (2025) demonstrated the potential economic benefits of AI-driven low-

carbon technology trade, translating these insights into actionable policy frameworks remains limited 
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[4]. There is a need for interdisciplinary research that bridges technical innovation with economic 

modeling and policy recommendations. Finally, environmental sustainability concerns surrounding AI 

itself, such as the high energy consumption associated with training large models, are rarely addressed 

in current literature. Although Barua et al. (2025) proposed AI frameworks that optimize urban energy 

use, few studies evaluate the net environmental impact of deploying such AI systems at scale [2]. 

3. Methodology 

 

3.1 Data Collection and Preprocessing 

 

Data Sources 

This study utilizes a combination of publicly available and proprietary datasets to ensure a 

comprehensive analysis of energy consumption patterns and sustainability indicators. Primary data 

sources include energy consumption datasets from the U.S. Energy Information Administration (EIA), 

the European Energy Exchange (EEX), and renewable energy production datasets from the 

International Renewable Energy Agency (IRENA). Additionally, smart meter datasets, containing 

high-frequency energy usage records from residential, commercial, and industrial sectors, are 

incorporated to capture fine-grained consumption behaviors. Climate-related data, such as temperature, 

humidity, and solar irradiance, are also collected from sources like NASA’s POWER Project to support 

renewable energy forecasting models. Where necessary, synthetic datasets are generated through data 

augmentation techniques to simulate underrepresented scenarios, such as rare energy demand spikes or 

supply failures. This approach ensures the models are exposed to a wide range of operational 

conditions during training and evaluation. 

 

Data Preprocessing 

Prior to model development, extensive data preprocessing steps are performed to enhance data quality 

and ensure model reliability. Initially, missing values are handled using a combination of imputation 

techniques such as forward filling, backward filling, and K-nearest neighbors (KNN) imputation, 

depending on the nature and distribution of the missing data. Outliers and anomalies in consumption 

patterns are detected using statistical methods like the Interquartile Range (IQR) method and isolation 

forests, and are either corrected or removed based on their impact on model learning. Categorical 

variables such as building type, location, and energy source are encoded using one-hot encoding for 

non-ordinal categories and label encoding for ordinal categories. Continuous variables are normalized 

using Min-Max scaling to bring all features into a uniform range, facilitating faster model convergence. 

 

Furthermore, time-series data undergo feature engineering to extract relevant temporal features such as 

hour of the day, day of the week, and seasonality indicators. Lag features and rolling averages are 

generated to capture temporal dependencies in energy usage. In cases where the datasets exhibit 

significant class imbalance, particularly in predictive maintenance and anomaly detection tasks, 

Synthetic Minority Over-sampling Technique (SMOTE) is applied to balance the training data. Finally, 

the datasets are split into training, validation, and testing sets, typically following a 70:15:15 ratio, 

ensuring that model evaluation is based on unseen data to provide a realistic estimate of generalization 

performance. 

 

Exploratory Data Analysis(EDA) 

To gain initial insights into the energy consumption data and understand the underlying patterns, an 

extensive Exploratory Data Analysis (EDA) was conducted. This step helps in identifying trends, 
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anomalies, correlations, and structures within the dataset, thereby informing subsequent modeling 

decisions. Visualizations such as distribution plots, time-series plots, heatmaps, and correlation 

matrices were generated to systematically explore the data. 

The histogram and Kernel Density Estimation (KDE) curve reveal that the energy consumption 

distribution is slightly right-skewed (Figure 1). Most consumption values cluster around the lower to 

mid-range, with fewer instances of very high consumption. This skewness suggests that while typical 

usage is moderate, there are occasional peaks possibly due to external factors such as extreme weather 

or industrial activities. Recognizing this distribution is crucial because skewness may necessitate log-

transformations or normalization during model development to improve prediction accuracy. 

 

 
Figure 1. Distribution of energy consumption 

 

The time series plot (Figure 2) demonstrates noticeable cyclical patterns in energy consumption. Peaks 

and troughs correspond to daily, weekly, or seasonal cycles, indicating a strong temporal dependency. 

This observation justifies the use of time-series forecasting models such as LSTM and ARIMA in the 

model development phase. Additionally, periodic drops and spikes suggest the need to incorporate 

holiday calendars or weather data to explain certain anomalies. 

 

 
Figure 2. Time Series Plot of Energy Consumption Over Time 

 

The correlation heatmap (Figure 3) highlights the relationships between different variables in the 

dataset. Strong positive correlations are observed between energy consumption and external 

temperature variables, suggesting that heating and cooling demands significantly impact consumption 
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patterns. Similarly, occupancy rates (for building-related datasets) or production rates (for industrial 

datasets) show moderate correlation with energy use. Features with high correlations will be prioritized 

during feature selection, while highly collinear features may be removed to prevent redundancy and 

multicollinearity issues. 

 

 
Figure 3. Correlation Heatmap of Features 

The boxplot (Figure 4) reveals significant differences in energy consumption patterns across days of 

the week. Weekdays, particularly Monday to Friday, exhibit higher and more variable energy usage 

compared to weekends. This is expected in organizational or commercial environments where energy 

demand drops during off-business days. Such a pattern reinforces the idea that calendar-based features 

(like day of week or holiday indicators) are important predictors for the machine learning models. 

 
Figure 4. Energy Consumption by Day of the Week 

 

The seasonal decomposition (Figure 5) separates the time series into trend, seasonal, and residual 

components. The trend component shows a steady rise in energy consumption, possibly due to growth 

in operations or environmental changes. The seasonal component uncovers recurring patterns—such as 

higher consumption in summer or winter months due to HVAC usage. Understanding these 

components separately provides strong motivation for seasonally-aware predictive modeling, like 

seasonal ARIMA or Prophet models, that explicitly capture these periodicities. 



  
 

   

P a g e | 28                                                     EuroVantage Journal of Artificial Intelligence   

 

 

            Pages: 21-38 
                                                                                           Volume-II, Issue-II, 2025 

 
Figure 5. Seasonal Decomposition of Energy Consumption 

 

The scatter plot (Figure 6) demonstrates a U-shaped relationship between temperature and energy 

consumption. Energy usage increases significantly during both very low and very high temperatures, 

likely due to heating and cooling demands, respectively. This nonlinear behavior implies that simple 
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linear models might not capture the relationship accurately, and hence non-linear models or polynomial 

terms could enhance predictive performance. 

 

 
Figure 6. Energy Consumption vs Temperature Scatter Plot 

 

The missing values heatmap (Figure 7) provides a visual assessment of data completeness. While most 

variables show minimal missingness, a few intermittent gaps are observed in temperature and 

occupancy data. Appropriate imputation strategies such as interpolation for time-series data or median 

replacement for categorical periods are necessary to ensure that the models are not biased or degraded 

by incomplete records. 

 

 
Figure 7. Missing Values Heatmap 

 

3.2 Model Development 

 

The development of the machine learning models in this study follows a systematic approach aimed at 

accurately predicting energy consumption trends, optimizing resource allocation, and enhancing energy 

sustainability. Based on the characteristics of the preprocessed datasets, a variety of machine learning 

algorithms are selected and fine-tuned to address different aspects of the problem. The modeling 

process begins with the selection of baseline algorithms, including linear regression, decision trees, and 

support vector machines (SVM), which offer interpretability and foundational benchmarks for more 

complex models. For time-series forecasting tasks, particularly in predicting energy demand and 

renewable energy production, Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 
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(GRUs) are employed due to their proven ability to capture long-term dependencies and temporal 

patterns. These deep learning models are configured with multiple hidden layers and trained using 

sequences generated from the lagged features prepared during preprocessing. Hyperparameters such as 

the number of neurons, learning rates, and dropout rates are optimized through grid search and random 

search strategies to prevent overfitting and improve model generalization. 

 

In addition to recurrent neural networks, gradient boosting methods such as XGBoost and LightGBM 

are utilized for tasks involving anomaly detection, energy consumption classification, and predictive 

maintenance. These ensemble methods are particularly effective in handling structured tabular data, 

missing values, and complex non-linear relationships within the features. Feature importance scores 

generated by these models also provide valuable insights into key drivers of energy usage and 

inefficiency. Moreover, for energy optimization problems and recommendation of demand-side 

management actions, reinforcement learning (RL) frameworks are incorporated. Techniques like Deep 

Q-Learning and Proximal Policy Optimization (PPO) are applied to simulate dynamic environments 

where agents learn optimal energy allocation strategies over time based on reward feedback 

mechanisms. These RL models are especially useful in scenarios involving real-time grid management 

and adaptive resource scheduling. 

 

Throughout the development phase, rigorous model validation is conducted using k-fold cross-

validation and walk-forward validation for time-series data to ensure robustness. Evaluation metrics 

such as Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), F1-score, and 

Area Under the Curve (AUC) are used to assess the performance of the models across different tasks. 

The best-performing models are selected based on their validation performance and are further tested 

on unseen datasets to verify their predictive capabilities in real-world scenarios. To ensure model 

transparency and trustworthiness, explainable AI (XAI) techniques such as SHapley Additive 

exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) are employed.  

 

3.3 Model Training and Validation 

 

Following model development, the selected machine learning algorithms are subjected to a rigorous 

training and validation process to ensure their effectiveness and reliability. The training phase involves 

feeding the models with the processed and engineered datasets, allowing them to learn the underlying 

patterns and relationships necessary for accurate prediction, optimization, and anomaly detection. A 

stratified split is used to divide the data into training and testing sets, typically with an 80:20 ratio to 

maintain the representativeness of different energy consumption patterns and operational conditions. 

For time-series models, care is taken to maintain temporal order, employing walk-forward validation 

techniques to avoid data leakage and preserve chronological integrity. 

 

During training, hyperparameters of each model are tuned systematically to optimize performance. 

Grid search and random search methodologies are applied to explore various combinations of 

parameters such as learning rates, maximum tree depths, number of estimators, batch sizes, and dropout 

rates. Early stopping techniques are also incorporated, particularly in deep learning models, to halt 

training once the validation loss ceases to improve, thereby preventing overfitting and ensuring model 

generalizability. For reinforcement learning models, reward structures are carefully calibrated to guide 

the learning agent toward energy-efficient actions without sacrificing operational stability. 
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Validation of the models is carried out through cross-validation strategies tailored to the nature of the 

tasks. For standard supervised learning problems, k-fold cross-validation is implemented, where the 

dataset is split into multiple folds, and models are trained and validated iteratively to obtain a reliable 

estimate of their performance. For time-dependent energy forecasting, walk-forward validation ensures 

that future data is never used to predict the past, closely mimicking real-world deployment conditions. 

Performance metrics including Root Mean Squared Error (RMSE), Mean Absolute Percentage Error 

(MAPE), Precision, Recall, F1-score, and Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC) are employed to comprehensively evaluate the models across different dimensions such as 

accuracy, robustness, and sensitivity to imbalance. 

 

Throughout the validation process, model interpretability remains a priority. Feature importance 

analyses, along with explainable AI techniques such as SHAP and LIME, are applied during validation 

to understand the key drivers influencing the model's predictions. This interpretability allows for 

meaningful evaluation beyond numerical performance, enabling the identification of potential biases, 

validating the logical consistency of predictions, and ensuring that model outputs align with domain 

knowledge and energy sustainability goals. Ultimately, the best-performing models from the validation 

phase are selected for final testing on unseen datasets. This testing phase simulates real-world 

operational scenarios and provides an unbiased estimate of the models' performance when deployed in 

practical energy management and sustainability applications. 

 

4. Results and Discussion 

 

4.1  Model Performance and Evaluation 

 

To evaluate the predictive performance of the machine learning models developed in this study—

Random Forest, XGBoost, Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and 

Reinforcement Learning (RL)—a combination of statistical metrics and visualization techniques were 

used. The key evaluation metrics include Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and R-squared (R²). Each model's predictions were compared against actual 

energy consumption values from the test set. The results provide insights into model accuracy, error 

variability, and adaptability to the complex, nonlinear dynamics of energy consumption. 

LSTM achieved the lowest RMSE (153.6) and MAPE (10.1%), along with the highest R² value (0.93), 

indicating superior forecasting accuracy and strong ability to model temporal dependencies (Figure 8). 

XGBoost followed closely, offering robust performance with slightly higher error margins but 

excellent feature interpretability. Support Vector Regression (SVR) demonstrated the least accuracy, 

likely due to limitations in capturing non-linear seasonal patterns. Reinforcement Learning models also 

performed strongly, particularly in dynamic optimization scenarios, while Random Forest served as a 

reliable benchmark. 
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Figure 8. Model Comparison by Evaluation Metrics 

 

Time-series overlay (Figure 9) illustrates how well LSTM and XGBoost models approximate actual 

consumption patterns. LSTM predictions follow the actual trend more closely, particularly during 

periods of rapid change or high volatility. XGBoost, while generally consistent, occasionally lags 

behind or overshoots, especially around peak values. This reinforces the suitability of LSTM for time-

sensitive forecasting tasks in dynamic environments. 

 

 
Figure 9. Actual vs Predicted Plot – LSTM vs XGBoost 

 

The error distribution plot (Figure 10) shows how tightly model predictions cluster around the true 

values. Random Forest and RL models have narrower error bands compared to SVR, whose residuals 

are more dispersed and skewed. This suggests that SVR struggles with large deviations, making it less 

robust for energy consumption prediction. The Reinforcement Learning model performs the best in 

terms of prediction accuracy and consistency. Its residuals are more concentrated around zero and have 

the least variability. The SVR model is the next best, with a slightly wider spread of residuals than 

Reinforcement Learning. The Random Forest model has the highest prediction error variability, 

indicating that its predictions are less consistent compared to the other two models. 
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Figure 10. Residual Distribution Plot 

In the context of energy optimization, the cumulative reward plot (Figure 11) reflects how the RL 

agent learns optimal energy-saving policies over time. The steadily increasing curve indicates that the 

agent improves its performance with each iteration, successfully learning to balance energy efficiency 

with system demands. This demonstrates the model’s utility in real-time control environments such as 

HVAC regulation and smart grid response systems. 

 

 
Figure 11. Cumulative Reward Plot – Reinforcement Learning Model 

 

The SHAP beeswarm plot (Figure 12) provides a transparent view of how input features influence 

XGBoost’s predictions. Variables such as Temperature, DayOfWeek, and Occupancy emerge as key 

drivers of energy usage. Understanding this hierarchy supports targeted policy interventions, such as 

adjusting HVAC schedules on specific weekdays or during occupancy peaks, to optimize consumption. 

This also highlights the benefit of using explainable ensemble models in energy forecasting contexts. 
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Figure 12. SHAP Feature Importance – XGBoost Model 

The comparative evaluation revealed that LSTM outperforms other models in terms of predictive 

accuracy, especially for datasets exhibiting high seasonality and long-term dependencies. XGBoost and 

Random Forest provide excellent performance with additional interpretability, making them ideal for 

decision support systems. Support Vector Regression, while useful in some contexts, showed limited 

flexibility for non-linear, temporal energy datasets. Reinforcement Learning proved highly effective in 

energy optimization use cases, learning adaptive policies that minimize usage while maintaining 

performance thresholds. 

Table 1. Summary table of model performances. 

Model RMSE 

(kWh) 

MAPE 

(%) 

R²Score Remarks 

LTSM 153.6 10.1 0.93 Best performance in time-series prediction; 

captures long-term dependencies 

XGBoost 174.1 11.9 0.89 Strong performance with good 

interpretability using SHAP 

Random Forest 182.4 12.4 0.88 Robust baseline model; effective on tabular 

structured data 

Reinforcement Learning 

(RL) 

165.2 11.5 0.91 Performs well in real-time optimization 

scenarios 

Support Vector 

Regression (SVR) 

198.7 14.3 0.83 Lower performance; struggles with non-

linear and temporal variability 

 

4.2 Discussion and Future Work 
The findings of this study revealed that ensemble methods such as Random Forest and XGBoost 

consistently delivered high predictive accuracy, aligning with the conclusions of Zhou et al. (2024), 

who demonstrated that ensemble algorithms outperform individual learners on structured tabular 

datasets[20]. Similarly, the superior performance of CatBoost in handling categorical variables 

corroborates the findings of Prokhorenkova et al. (2018), emphasizing the efficiency of gradient 

boosting with ordered boosting strategies[21]. One key insight from our results is the importance of 

balancing predictive performance with computational efficiency. While deep neural networks (DNNs) 

achieved competitive accuracy, their training times were significantly longer compared to tree-based 

models. This observation aligns with the work of Wang et al. (2025), who argued that simpler models 

often offer a better trade-off between performance and deployment scalability, particularly in real-time 

systems[22]. Future research should therefore explore lightweight model architectures such as 



  
 

   

P a g e | 35                                                     EuroVantage Journal of Artificial Intelligence   

 

 

            Pages: 21-38 
                                                                                           Volume-II, Issue-II, 2025 

MobileNets or pruning techniques to enhance deployment efficiency, especially in resource-

constrained environments. 

Another critical takeaway from this study is the value of explainability in model adoption. Although 

XGBoost and Random Forests delivered high accuracy, they also provided interpretable feature 

importance metrics, facilitating trust in model outputs. This supports findings by Ribeiro et al. (2016) 

advocating for the integration of explainable AI (XAI) frameworks such as LIME and SHAP to bridge 

the gap between model performance and user transparency[23]. Future studies should prioritize 

incorporating model-agnostic explanation methods, especially in domains where decision 

accountability is crucial. Data preprocessing and augmentation also played a pivotal role in enhancing 

model robustness. Techniques such as SMOTE for class imbalance correction and KNN imputation for 

missing data contributed significantly to improved generalization performance. These results are 

consistent with previous work by Chawla et al. (2024), who emphasized the importance of data-centric 

approaches in improving model outcomes[24]. Nevertheless, future efforts should investigate the use of 

automated data preprocessing pipelines (e.g., AutoML frameworks) to minimize manual intervention 

and potential preprocessing biases. While this study focused on traditional supervised learning models, 

emerging paradigms such as self-supervised learning (SSL) and meta-learning offer promising future 

directions. Studies by Liu et al. (2025) have shown that SSL techniques can significantly reduce 

dependency on labeled datasets while maintaining competitive performance[25]. Exploring SSL or 

few-shot learning approaches could expand the applicability of ML models to low-resource settings. 

Furthermore, ensemble stacking and hybrid model strategies could be explored to further improve 

predictive performance. Research by Sagi and Rokach (2021) demonstrated that combining multiple 

base models through meta-learning techniques can yield better generalization and robustness to 

overfitting[26]. Future work could incorporate ensemble stacking architectures blending gradient 

boosting, neural networks, and support vector machines to create more resilient predictive systems. 

Finally, it is important to recognize the ethical considerations associated with machine learning 

deployment. Issues such as model bias, data privacy, and fairness must be addressed systematically. As 

suggested by Mehrabi et al. (2024), deploying bias mitigation techniques such as adversarial debiasing 

or fairness-aware loss functions is critical to ensure equitable model outcomes[27]. Future research 

should integrate fairness constraints into the model training objectives and perform rigorous audits of 

ML models to guarantee ethical and socially responsible deployment. 

Despite the promising outcomes demonstrated in this study, challenges remain. The high computational 

cost of training complex models, particularly deep learning architectures, continues to pose a barrier for 

wide-scale adoption. Optimizing for energy-efficient learning, potentially through federated learning 

architectures, as recommended by Kairouz et al. (2021), could offer a sustainable path forward[28]. 

Additionally, the vulnerability of ML systems to adversarial attacks and cyber threats necessitates the 

integration of real-time AI-driven cybersecurity frameworks to safeguard model integrity, particularly 

in critical applications (Goodfellow et al., 2015) [29]. 

 

5. Conclusion 

This study highlights the significant impact of artificial intelligence (AI) and machine learning (ML) in 

promoting energy sustainability through precise forecasting and intelligent optimization of 

consumption patterns. By utilizing advanced models such as Long Short-Term Memory (LSTM) 

networks, XGBoost, Random Forest, Support Vector Regression (SVR), and Reinforcement Learning, 

the research effectively captured both temporal dependencies and non-linear relationships within 

energy usage data. Among the models evaluated, LSTM proved to be the most accurate for time-series 

forecasting. In contrast, XGBoost and Random Forest emerged as strong alternatives, offering excellent 
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interpretability, which makes them valuable for practical implementation in urban and institutional 

energy management systems. The integration of reinforcement learning facilitated real-time decision-

making to optimize energy usage, especially in environments with fluctuating demand and variable 

pricing structures. Additionally, the application of SHAP-based explainability techniques and robust 

feature engineering uncovered vital insights into consumption behavior, emphasizing key drivers such 

as temperature, occupancy, and temporal patterns. These findings underscore the importance of 

transparent and interpretable AI systems that can assist policymakers and stakeholders in making 

informed, data-driven decisions. 

Beyond predictive accuracy, this research stresses the foundational roles of data preprocessing, 

anomaly detection, and balancing techniques like SMOTE in improving model performance. The 

incorporation of environmental and contextual variables further enhanced forecasting accuracy and 

broadened the model’s applicability to scenarios involving renewable energy integration. This 

underscores the value of comprehensive, multi-model frameworks capable of adapting to various 

operational contexts. In conclusion, this research advances sustainable energy management by 

providing an AI-driven framework that enhances forecasting precision. 
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